Combining Shape Priors and MRF-Segmentation
نویسندگان
چکیده
Wepropose a combination of shape prior models with Markov Random Fields. The model allows to integrate multiple shape priors and appearance models into MRF-models for segmentation. We discuss a recognition task and introduce a general learning scheme. Both tasks are solved in the scope of the model and verified experimentally.
منابع مشابه
A New Spatio-Temporal MRF Framework for Video-based Object Segmentation
In this paper we propose a general framework for videobased object segmentation using a new spatio-temporal Markov Random Field (MRF) model. Video-based object segmentation has the potential to improve the performance of static image segmentation by fusing information over the temporal scale. Built upon a spatio-temporal MRF model, our method offers three advantages in a unified framework. Firs...
متن کاملVariational Segmentation with Shape Priors
We discuss the design of shape priors for variational regionbased segmentation. By means of two different approaches, we elucidate the critical design issues involved: representation of shape, use of perceptually plausible dissimilarity measures, Euclidean embedding of shapes, learning of shape appearance from examples, combining shape priors and variational approaches to segmentation. The over...
متن کاملCurvature Prior for MRF-Based Segmentation and Shape Inpainting
Most image labeling problems such as segmentation and image reconstruction are fundamentally ill-posed and suffer from ambiguities and noise. Higher order image priors encode high level structural dependencies between pixels and are key to overcoming these problems. However, these priors in general lead to computationally intractable models. This paper addresses the problem of discovering compa...
متن کاملTum Technische Universität München
We propose a general class of label configuration priors for continuous multi-label optimization problems. In contrast to MRF-based approaches, the proposed framework unifies label configuration energies such as minimum description length priors, co-occurrence priors and hierarchical label cost priors. Moreover, it does not require any preprocessing in terms of super-pixel estimation. All probl...
متن کاملA shape prior-based MRF model for 3D masseter muscle segmentation
Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008